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An Adaptive Tracking Controller Using Neural
Networks for a Class of Nonlinear Systems

Man Zhihong, H. R. Wu, and M. Palaniswami,Senior Member, IEEE

Abstract—A neural-network-based adaptive tracking control
scheme is proposed for a class of nonlinear systems in this paper.
It is shown that RBF neural networks are used to adaptively
learn system uncertainty bounds in the Lyapunov sense, and the
outputs of the neural networks are then used as the parame-
ters of the controller to compensate for the effects of system
uncertainties. Using this scheme, not only strong robustness with
respect to uncertain dynamics and nonlinearities can be obtained,
but also the output tracking error between the plant output and
the desired reference output can asymptotically converge to zero.
A simulation example is performed in support of the proposed
neural control scheme.

Index Terms—Adaptive control, asymptotic stability, neural
networks, nonlinear systems, robustness, uncertain dynamics.

I. INTRODUCTION

I N RECENT years, the neural-network-based control tech-
nique has represented an alternative method to solve the

problems in control engineering. The most useful property
of neural networks in control is their ability to approximate
arbitrary linear or nonlinear mapping through learning. It is
because of the above property that many neural-network-based
controllers have been developed for the compensation for the
effects of nonlinearities and system uncertainties in control
systems so that the system performance such as the stability,
convergence, and robustness can be improved.

It can be seen from the recent development of the neural-
network-based control systems that, by suitably choosing
neural-network structures, training methods, and sufficient
past input and output data, the neural networks can be well
trained to learn the system forward dynamics to predict the
future behavior of the systems for the predictive control and
model following control, or to learn the inverse dynamics for
inverse control. However, the stability, error convergence, and
robustness have not been fully proved for these off-line trained
neural-network-based control systems because of the high
nonlinearity of the neural networks and the lack of feedback
[1]. The recent developments in [2], [6], and [8] using adaptive
neural networks for direct adaptive control have made a great
progress in view to solve the above problems. For example,
asymptotic error convergence can be guaranteed within a
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boundary layer by using adaptive neural networks. However,
the output tracking error between the controlled plant and its
desired reference trajectory cannot converge to zero due to the
approximation error between the system uncertainties and the
outputs of the neural networks.

In this paper, we propose a new neural-network-based robust
adaptive tracking control scheme for a class of nonlinear
systems based on [5], [9]–[11], [13], and [14]. It is shown
that, unlike all other neural-network-based control schemes
[1], [2], [6], [8], neural networks are not directly used to
learn the system uncertainties, but they are used to adaptively
learn the bounds of uncertain dynamics in a compact set.
The outputs of the neural networks then adaptively adjust
the gain of the sliding mode controller so that the effects
of system uncertainties can be eliminated and the output
tracking error between the plant output and the desired ref-
erence signal can asymptotically converge to zero. Because
the adaptive neural learning skill and the sliding mode control
technique are combined in this paper, the proposed neural
control scheme behaves with strong robustness with respect
to unknown dynamics and nonlinearities. It will be further
shown that it is convenient to use neural networks to learn
some uncertainty bounds which are time-varying functions
with high nonlinearities, and then the sliding mode control
can be easily implemented.

This paper is organized as follows. In Section II, the design
of the sliding mode control using the known uncertainty
bounds are briefly reviewed, and two RBF neural networks
used to learn the system uncertainty bounds are formulated. In
Section III, an RBF neural-network-based adaptive tracking
controller is proposed and robustness and error convergence
of the closed-loop control system are discussed in detail. In
Section IV, a simulation example using a one-link rigid robotic
manipulator is performed in support of the proposed control
scheme. Section V gives concluding remarks.

II. PROBLEM FORMULATION

In this paper, we focus on the design of a neural-network-
based robust adaptive tracking controller for a class of single-
input and single-output nonlinear systems whose dynamical
equations can be expressed in the following form:

(1)

where is the time, is the output variable,
is the th derivative of , is
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the control input, and and
are unknown nonlinear functions.

For general consideration, the following assumptions are
made.

A1) The nonlinear function is
upper bounded

(2)

where is a positive func-
tion.

A2) The sign of control gain is
known , and it is lower bounded

(3)

where is a positive func-
tion.

Equation (1) can also be expressed as the following state
equation:

(4)

where

The desired reference model for the system (4) to follow is
given by

(5)

where , and are known
constant matrices, and is the input of the reference model.

Defining the output tracking error , and an error
vector

(6)

where , the error
dynamics can then be obtained by using (4)–(6) as follows:

(7)

For further analysis, a variableis defined as follows:

(8)

where is chosen such that zeros of the
polynomial are in the left half of the complex plane. For
convenience, we let . Usually, is called the switching
plane variable and is called the sliding mode in sliding
mode control [3]–[5], [13]–[14].

If and are known, the standard technique of
the sliding mode control can be used to design the control
input. The results on the design of the sliding mode controller
and the analysis of the error convergence can be summarized
in the following theorem.

Theorem 1: Consider the error dynamics in (7) for the
nonlinear system (1). If the control input is designed such that

(9)

then the output tracking error asymptotically converges to zero.
Proof: Defining a Lyapunov function

(10)

and differentiating with respect to time, we have

for (11)

where

(12)

Equation (11) with (12) means that the switching plane vari-
able s reaches the sliding mode in a finite time
according to Lyapunov stability theory [5], and then the error
dynamics satisfies the following differential equation in the
sliding mode:

(13)

Therefore, the output tracking error asymptotically converges
to zero.
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In this paper, we consider the case that the positive nonlinear
functions and are unknown. Now we define

(14)

(15)

and the following two RBF neural networks are used to
adaptively learn the uncertain bounds and in
(14) and (15), respectively,

(16)

(17)

where and are the weight vectors of the RBF neural
networks in the above, and the vectors and

are Guassian type of functions defined as

(18)

(19)

Remark 1: and
in (18) and (19) are predetermined, and the local training
technique in [15] can be used to choose and .
In this case, the adjustable weights and appear linearly
with respect to the known nonlinear functions and ,
respectively, [6] and [15].

For the further analysis, the following assumptions are
made.

A3) Given two arbitrary small positive constants and
and two continuous functions and ,

defined in (14) and (15), on a compact set, there
exist two optimal weight vectors and such that
the outputs of the two optimal neural networks with
enough nodes satisfy [2], [6]

(20)

(21)

A4) The uncertainty bounds and in (2) and
(3) also satisfy the following inequalities on the com-
pact set :

(22)

(23)

Remark 2: Two Assumptions A3 and A4 are reasonable.
Assumption A3 reflects the approximation capability of neural
networks, and it has been proved and used by many researchers
[1], [2], [6]–[8], [15]. And A4 gives the flexible ranges of

and together with Assumptions A1 and A2.
The objective of this paper is to use the RBF neural

networks in (16) and (17) to learn the uncertain bounds
and in (14) and (15), and the outputs of the neural
networks are then used as the parameters of the controller
so that the output tracking error between the plant and its
reference model can asymptotically converge to zero and
strong robustness with respect to uncertain dynamics can be
guaranteed.

III. T HE DESIGN OF THE

NEURAL-NETWORK-BASED CONTROLLER

For the design of the neural-network-based controller, the
adjustment of the weights, and the analysis of the error
convergence, we have the following theorem.

Theorem 2: Consider the error dynamics in (7) with As-
sumptions A1 to A4. If the control input is designed such
that

(24)

where the weight vectors are adjusted by using the following
adaptive mechanisms:

(25)

(26)

with adaptive gains , , and initial values of the
weights

and

then the output tracking error asymptotically converges to zero.
Proof: Defining a Lyapunov function

(27)

where

(28)

(29)

Differentiating with respect to time, we have

(30)
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The first two terms in (30) can be written as follows:

(31)

It is noted that

(32)

and by suitably choosing in the sense that

(33)

we have

(34)

Then

(35)

Similarly, using (34), the third term in (30) satisfies the
following inequality:

(36)

Now considering Assumption A4, we have

(37)

the fourth and the fifth terms in (30) can then satisfy the
following inequality:

(38)

Finally, the sixth term in (30) can be expressed as

for (39)

with

(40)

Therefore, using (35), (38), and (39) in (40), we have

for (41)

Equation (41) means that the switching plane variable
converges to zero in a finite time according to Lyapunov
stability theory [5]. Then, it can be seen from (13) that the
output tracking error asymptotically converges to zero in the
sliding mode .

Remark 3: The robustness properties of the neural-
network-based adaptive controller in (24) may be summarized
as follows. 1) When the output tracking error is large due to the
effects of system uncertainties, the outputs of the RBF neural
networks are adaptively increased according to the update
laws in (25) and (26). The control gain can then be increased
to eliminate the effects of uncertain dynamics, and drive the
switching plane variable s to the sliding mode. In the sliding
mode, the output tracking error asymptotically converges to
zero. 2) The error dynamics of the closed-loop system are only
determined by the sliding mode parameters and are insensitive
to system uncertainties and bounded disturbances in the sliding
mode. 3) It can be seen from (24) that the controller does not
require any knowledge of the controlled nonlinear system,
and only the outputs, tracking error and its derivative are
used for the design of the controller though the system has
nonlinearities and parameter uncertainties.

Remark 4: It can be seen from the above theorem that the
weights of the RBF neural networks are adjusted in Lyapunov
sense. Therefore, it is not necessary for the weights of the
neural networks to converge to their optimal values, but
the values of the weights are adaptively increased until the
switching plane variable s converges to zero. Then the weights
will become constants to guarantee that the output tracking
error asymptotically converges to zero in the sliding mode.

Remark 5: It can be seen from (24) that the neural networks
used in this paper are essential to realize the nonlinear adaptive
control law because the uncertainty bounds and
are unknown nonlinear functions. However, if and

are constants, the design of the controller and adaptive
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laws can be greatly simplified without using neural networks
[5].

Remark 6: The sign function is involved in the
control signal in (24), and therefore chattering may occur in
the control input. Based on the principle of boundary layer
control technique in [3]–[5], the control input can be smoothed
by using to replace when , where is
a positive number. As shown in [3]–[5], the boundary layer
controller offers a continuous approximation to the chattering
control input signal inside the boundary layer, and guarantees
attractiveness to the boundary layer and ultimate boundedness
of the output tracking error to within a neighborhood of the
origin depending on . However, the drawback is that the
output tracking error can not converge to zero.

IV. A SIMULATION EXAMPLE

To illustrate the adaptive neural control scheme proposed in
this paper, a simulation example for a one-link rigid robotic
manipulator is performed. The dynamic equation of the one-
link rigid robotic manipulator is given by [12]

(42)

where the link is of length and mass , and is the angular
position with initial values and .

The above dynamical equation can be written as the fol-
lowing state equation:

(43)

For simplicity, the parameters in (42) are chosen as

The reference model is defined as

(44)

where and is a periodic
rectangular signal.

The controller is designed as

(45)

where

(46)

(47)

According to (24) and (25), are updated by

with

(48)

with (49)

The Runge–Kutta method with the sampling interval
s is used to solve the nonlinear differential equation

numerically in this simulation. Fig. 1(a)–(c) shows the system
output tracking, tracking error, and control input signal where
each of two neural networks has 15 neurones and 15 weights.
The widths, centers and initial values of the weight vectors of
the Guassian functions are chosen as follows:

and

It can been seen that good tracking performance has been
obtained.

Fig. 2(a)–(c) shows the good system performance where
each neural network has only six nodes and six weights, and
the corresponding widths, centers and initial values of the
weight vector of the Guassian functions are chosen as follows:

and

After we compare Fig. 1(a)–(c) with Fig. 2(a)–(c), the follow-
ing facts have been noted: First, the RBF networks used for the
simulation results in Fig. 1(a)–(c) are over-parameterized, and
the amplitude of the control signal is relatively high. Second,
by properly choosing the widths of Guassian functions of the
RBF neural networks, the number of nodes and weights can
be greatly reduced, and the amplitude of the control signal can
also be reduced as shown in Fig. 2(a)–(c).

Fig. 3(a)–(c) shows the simulation results where the num-
bers of nodes and weights of the neural networks are the same
as the ones used for the simulation results in Fig. 2(a)–(c).
However, the width of the of Guassian functions of the RBF
neural networks are modified as . It is seen that
the amplitude of the control signal has been increased and the
steady state of the system output is not smooth because of the
effects of the large input chattering signal.

Fig. 4(a)–(c) shows the simulation results where the num-
bers of nodes and weights of the neural networks are the same
as the ones used for the simulation results in Figs. 2(a)–(c)
and 3(a)–(c), but the initial values of the weight vectors are
changed as follows:

It can be seen that the error convergence is a little bit slower
than the one in Fig. 3(a), but the amplitude of the control
signal is greatly reduced in the first period and therefore, the
steady-state response of the system output has been greatly
improved compared with Fig. 3(a).

Fig. 5(a)–(c) shows the system performance where the sign
function in the control input in Fig. 3(c) is replaced
by . It is seen that the chattering is eliminated and
the amplitude of the control signal is greatly reduced [3]–[5].
However, as discussed in Remark 6, the drawback is that the
output tracking error cannot converge to zero.
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(a)

(b)

(c)

Fig. 1. (a) The output tracking of the angular position. (b) The output
tracking error of the angular position. (c) The control input signal.

V. CONCLUSION

A new adaptive tracking controller using RBF neural net-
works is proposed for a class of nonlinear systems in this

(a)

(b)

(c)

Fig. 2. (a) The output tracking of the angular position. (b) The output
tracking error of the angular position. (c) The control input signal.

paper. Our analysis and simulation results have shown that
the RBF neural networks can adaptively learn the system
uncertainty bounds, and the outputs of the neural networks can
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(a)

(b)

(c)

Fig. 3. (a) The output tracking of the angular position. (b) The output
tracking error of the angular position. (c) The control input signal.

then adaptively adjust the gain of the controller to eliminate the
effects of dynamical uncertainties and guarantee asymptotic
error convergence. The simulation results have shown the

(a)

(b)

(c)

Fig. 4. (a) The output tracking of the angular position. (b) The output
tracking error of the angular position. (c) The control input signal.

good tracking performance using the proposed control scheme.
Also, the effects of the width of the Guassian functions, initial
values of the weight vectors, and the number of nodes on
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(a)

(b)

(c)

Fig. 5. (a) The output tracking of the angular position. (b) The output
tracking error of the angular position. (c) The control input signal.

the system performance have been extensively investigated
in the simulation results. The further work on the extension
of the proposed neural control scheme to the control of

multiinput and multioutput nonlinear systems is under the
authors’ investigation.
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